Biobank Project:
Progress & Plans

Carlos Cruchaga. PhD
Current Biobank

• Obtain baseline blood for DNA-> Coriell

• DNA for more than >3,200 Dystonia Coalition participants.
 • Around 50% are from cervical dystonia (CD)

• DNA has been instrumental to identify new genes for dystonia
Current Biobank: DNA Available Baseline. Banked at Coriell

Natural History Enrollment
August 2009 - Present
Current Biobank: DNA Available Baseline. Banked at Coriell

Dystonia Type:
- Focal Dystonia: 68%
- Segmental Dystonia: 21%
- Multifocal Dystonia: 7%
- Hemidystonia: 0%
- Generalized Dystonia: 4%
Current Biobank: DNA by site

[Graph showing DNA by site count for various institutions]

- Medical College of Wisconsin: 138
- Westmead Hospital (Australia): 66
- Sanford Health (Fargo): 44
- Booth Gardner Parkinson Care Center: 35
- Lahey Clinic: 32
- U New Mexico: 58
- Mayo Clinic: 41
- Parkinsons and Movement Disorders Institute: 142
- VCU: 83
- U Rochester: 184
- CHUM (University of Montreal): 30
- U Colorado-Denver: 44
- U Cincinnati: 150
- NIH: 66
- Beth Israel Deaconess Medical Center: 13
- Hospital de la Salpetriere: 54
- U Rome: 40
- Parkinsons and Movement Disorders Center of Maryland: 20
- Johns Hopkins: 74
- College of London: 116
- Veracyt Neuroscience: 121
- U Penn: 42
- Toronto Western Hospital: 42
- Houston Methodist: 271
- U Tennessee: 81
- U Maryland: 157
- U Iowa: 143
- U Florida: 40
- U Alabama: 40
- Luebeck: 40
- Baylor College of Medicine, Houston, TX: 381
- Washington University: 404
- Rush University: 404

[Logo: DYSTONIA COALITION]
Genetic Characterization of DC participants

Mark S. LeDoux, MD, PhD
Satya R. Vemula, PhD
Jianfeng Xiao, MD, PhD
Misty M. Thompson, PhD
Joel S. Perlmutter, MD
Laura J. Wright, MA
H.A. Jinnah, MD, PhD
Ami R. Rosen, MS
Peter Hedera, MD, PhD
Cynthia L. Comella, MD
Anne Weissbach, MD
Johanna Junker, MD
Joseph Jankovic, MD
Richard L. Barbano, MD, PhD
Stephen G. Reich, MD
Ramon L. Rodriguez, MD
Brian D. Berman, MD
Sylvain Chouinard, MD
Lawrence Severt, MD, PhD
Pinky Agarwal, MD
Natividad P. Stover, MD
On behalf of the Dystonia Coalition Investigators,
Dystonia Genetic Consortium

Clinical and genetic features of cervical dystonia in a large multicenter cohort

OPEN
Genetic Characterization of DC participants

<table>
<thead>
<tr>
<th>Gene</th>
<th>Participant (s)</th>
<th>cDNA</th>
<th>Protein</th>
<th>ACMG classification</th>
<th>dbSNP</th>
<th>EVS</th>
<th>1K</th>
<th>ExAC</th>
<th>Minor allele frequency</th>
<th>In silico pathogenicity/disease causation</th>
<th>Splicing (human splicing finder 3.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNAL</td>
<td>DYS1579</td>
<td>e.40C>T</td>
<td>p.Q116*</td>
<td>Pathogenic</td>
<td>rs73397885</td>
<td>0.01</td>
<td>0.008</td>
<td>0.00562</td>
<td>0.0005</td>
<td>NA</td>
<td>Disease causing</td>
</tr>
<tr>
<td>GNAL</td>
<td>n = 5</td>
<td>e.66C>T</td>
<td>p.R22R</td>
<td>Pathogenic</td>
<td>rs73397885</td>
<td>0.01</td>
<td>0.008</td>
<td>0.00562</td>
<td>0.0025</td>
<td>Tolerated</td>
<td>Polymorphisms</td>
</tr>
<tr>
<td>GNAL</td>
<td>DYS497</td>
<td>e.138C>A</td>
<td>p.L471</td>
<td>Likely pathogenic</td>
<td>rs1895089</td>
<td>0.000027</td>
<td>0.348</td>
<td>0.298</td>
<td>0.087</td>
<td>Disease causing</td>
<td>2.55</td>
</tr>
<tr>
<td>GNAL</td>
<td>DYS573</td>
<td>e.216C>G</td>
<td>p.R72A</td>
<td>Likely pathogenic</td>
<td>rs1895089</td>
<td>0.000027</td>
<td>0.348</td>
<td>0.298</td>
<td>0.087</td>
<td>Disease causing</td>
<td>2.55</td>
</tr>
<tr>
<td>GNAL</td>
<td>n = 12</td>
<td>e.218C>T</td>
<td>NA</td>
<td>Likely benign</td>
<td>rs2692113</td>
<td>0.05</td>
<td>0.044</td>
<td>0.062</td>
<td>0.0141</td>
<td>NA</td>
<td>Benign</td>
</tr>
<tr>
<td>GNAL</td>
<td>n = 74</td>
<td>e.327T>9</td>
<td>NA</td>
<td>Likely benign</td>
<td>rs2692113</td>
<td>0.05</td>
<td>0.044</td>
<td>0.062</td>
<td>0.0141</td>
<td>NA</td>
<td>Benign</td>
</tr>
<tr>
<td>GNAL</td>
<td>n = 33</td>
<td>e.101C>T</td>
<td>p.A53C</td>
<td>Uncertain significance</td>
<td>rs1895089</td>
<td>0.000027</td>
<td>0.348</td>
<td>0.298</td>
<td>0.087</td>
<td>Disease causing</td>
<td>2.55</td>
</tr>
<tr>
<td>GNAL</td>
<td>DYS541</td>
<td>e.1016G>A</td>
<td>p.G340S</td>
<td>Likely pathogenic</td>
<td>rs142702291</td>
<td>0.0000249</td>
<td>0.0001539</td>
<td>0.00002</td>
<td>0.005</td>
<td>Tolerated</td>
<td>Disease causing</td>
</tr>
<tr>
<td>THAP1</td>
<td>DYS1729</td>
<td>e.57C>T</td>
<td>p.P19P</td>
<td>Uncertain significance</td>
<td>rs146087734</td>
<td>0.000023</td>
<td>0.000069</td>
<td>0.00005</td>
<td>0.005</td>
<td>Tolerated</td>
<td>Disease causing</td>
</tr>
<tr>
<td>THAP1</td>
<td>DYS1705</td>
<td>e.71C>A</td>
<td>p.R23C</td>
<td>Uncertain significance</td>
<td>rs20029186</td>
<td>0.0001999</td>
<td>0.0001291</td>
<td>0.0005</td>
<td>NA</td>
<td>NA</td>
<td>Benign</td>
</tr>
<tr>
<td>THAP1</td>
<td>DYS188</td>
<td>e.153C>G</td>
<td>p.A51R</td>
<td>Pathogenic</td>
<td>rs146087734</td>
<td>0.000023</td>
<td>0.000069</td>
<td>0.00005</td>
<td>0.005</td>
<td>Tolerated</td>
<td>Disease causing</td>
</tr>
<tr>
<td>THAP1</td>
<td>DYS1668</td>
<td>e.477A>G</td>
<td>p.M145V</td>
<td>Uncertain significance</td>
<td>rs146087734</td>
<td>0.000023</td>
<td>0.000069</td>
<td>0.00005</td>
<td>0.005</td>
<td>Tolerated</td>
<td>Disease causing</td>
</tr>
<tr>
<td>THAP1</td>
<td>DYS1754</td>
<td>e.90T>89</td>
<td>p.R199C</td>
<td>Uncertain significance</td>
<td>rs7421599861</td>
<td>0.000023</td>
<td>0.000069</td>
<td>0.00005</td>
<td>0.005</td>
<td>Tolerated</td>
<td>Disease causing</td>
</tr>
</tbody>
</table>

Abbreviations: 1K = 1000 Genomes Project; ACMG = American College of Medical Genetics and Genomics; CADD = Combined Annotation-Dependent Depletion; CD = cervical dystonia; cDNA = complimentary DNA; dbSNP = Single Nucleotide Polymorphism database; DC = Dystonia Coalition; ESE = exonic splicing enhancer; ESR = exonic splicing repressor; ESS = exonic splicing silencer; EVS = Exome Variant Server.
Genome-Wide Association studies

Genome-wide Association Study Identifies Common Genetic Variants Associated with Cervical Dystonia

Yan V. Sun¹,², Chengchen Li¹, Qin Hui¹, Joel S. Perlmutter³, Samantha Ruehl⁴, Christine Klein⁵, Joseph Jankovic⁶, Richard L. Barbano⁷, Stephen G. Reich⁸, J. Douglas Bremner⁹,¹⁰, Viola Vaccarino¹, Arshed A. Quyyumi¹¹, H. A. Jinnah¹², on behalf of the Dystonia Coalition Investigators

¹Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA; ²Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA; ³Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; ⁴Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA; ⁵The Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; ⁶Department of Neurology, Baylor College of Medicine, Houston, TX, USA; ⁷Department of Neurology, University of Rochester Medical center, Rochester, NY, USA; ⁸Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; ⁹Atlanta VA Medical Center, Decatur, Georgia, USA; ¹⁰Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA; ¹¹Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA; ¹²Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA

919 cases and 1,491 controls
Genome-Wide Association studies

Sun et al, Unpublished
Genome-Wide Association studies

Sun et al, Unpublished
Genome-Wide Association studies

- largest GWAS for any type of dystonia to date

- 1 common genome-wide significant variants (p-value$<5\times10^{-8}$) in 1 distinct loci

- Chromosome 3 signal is close upstream of $COL8A1$
 - Defects in $COL8A1$ are associated with corneal dystrophy and age-related macular degeneration.

- Gene-based analysis identified $DENND1A$ to be significantly associated with cervical dystonia (p-value 1.23×10^{-6}).

- One low-frequency variant was associated with lower age-at-onset (16.4±2.9 years, p-value=3.07×10^{-8}, MAF=0.01), located within the $GABBR2$ gene on chromosome 9 (rs147331823)

Sun et al, Unpublished
Genetics of dystonia

• Dystonia Coalition with GWAS data: 2,257
 • Collaboration with Drs. Klein and Lohmann

• Identification of variants and genes associated with risk and onset

• **Goal**: have GWAS data for all dystonia DNA
 • This will allow to identify genes, but also prediction models (PRS)
 • Generating WES (Drs. Klein and Lohmann) to look a rare coding variants
Goals for the Biobank

- To extend the current DNA repository by targeting BSP, LD and limb dystonia subjects as well as multiplex families.
 - Sporadic and familial presentations
 - Longitudinal (each visit)

- To develop a centralized repository of other blood-based materials
 - DNA
 - RNA
 - Plasma

- To identify novel genetic and proteomic factors for dystonia risk

- To identify genetic and proteomic factors that influence spread of dystonia
Goal: to Understand the Phenotypic Variability

- We need to go beyond just GWAS/WGS
- Molecularly Phenotype Clinical cohorts
- Generating multiple layers of omic data
Genetics is just the first layer
A metabolomic study of cervical dystonia

Chang Liu, Laura Scorr, Gamze Kilic-Berkmen, Adam Cotton, Stewart A. Factor, Alan Freeman, ViLinh Tran, Ken Liu, Karan Uppal, Dean Jones, H.A. Jinnah, and Yan V. Sun.
A Metabolomic Study of Cervical Dystonia

- Plasma samples from 100 cases with idiopathic cervical dystonia and 100 controls
- 7,346 metabolic features remained after quality control
- 289 significantly associated with case-control status

Liu et al, 2021
A Metabolomic Study of Cervical Dystonia

- Plasma samples from 100 cases with idiopathic cervical dystonia and 100 controls
- 7,346 metabolic features remained after quality control
- 289 significantly associated with case-control status
- 9 biological processes to be significantly associated at p<0.05,
 - 5 carbohydrate metabolism pathways
 - 3 lipid metabolism pathways
Summary

• The goals is to molecularly characterized the DC cohort
 • Genetic (GWAS, WGS), epigenomics (longitudinal), transcriptomics (longitudinal), proteomic (longitudinal), metabolomic and lipidomics

• Deep molecular phenotyping of well clinically characterized cohorts will lead to the identification of:
 • Novel genes and pathways implicated on the diseases
 • A deeper understanding pathologic events
 • Novel molecular phenotypes
 • Novel therapeutic targets

• The multi-omic data (genetic, epigenetic, transcriptomic, proteomic, metabolomic, between others) will allow to a more personalize prediction of disease risk and treatment
Q & A

Biobank (BB) Project
Washington University in St. Louis
Cor PI: Carlos Cruchaga. PhD cruchagac@wustl.edu
Study Coordinator: Jen Gentsch j.gentsch@wustl.edu
Study Coordinator: JoAnne Norton nortonj@wustl.edu