Non-Invasive Mechanosensory Perturbation to Test Voice-Related Motor and Somatosensory Cortical Responses in Spasmodic Dysphonia

Michael J. Hammer, M.A., Ph.D., CCC-SLP
Director, Airway Sensory Physiology Laboratory
Director, Center for Clinical Speech, Voice, and Swallow Physiology
University of Wisconsin – Whitewater

Supported by NIH Grants DC014519, DC010900, RR025012 and the Dystonia Coalition
Mechanosensation (sense of touch) in the larynx has often been associated with ballistic or defensive gestures including those for airway protection.

The laryngeal mechanosensorium may also be directly involved in the regulation of fine motor control of the larynx for voice.
Laryngeal Mechanosensory Mechanisms

Internal branch of superior laryngeal nerve (CN X)

Dependent upon rapidly adapting mechanoreceptors in laryngeal mucosa

Primary location for tissue strain associated with medialization of the arytenoids/vocal folds

(Andreatta, Mann, Poletto & Ludlow; Davis & Nail, 1988; Tanaka, Yoshida & Hirano, 1993; Yoshida, Tanaka, Hirano, & Nakashima, 2000)
The trouble is – of course – the sensory receptors in the larynx are a challenge to access.
Our Approaches to Study Somatosensory and Auditory Mechanisms of Voice Control

Left: Direct Somatosensory Stimulation of the Laryngeal Mucosa (developed in our laboratory)

Center: Non-Invasive Mechanosensory Perturbation During Breathing and Voice (developed in our laboratory)

Right: Pitch-Shifted Auditory Feedback (developed with collaborator Dr. Charles Larson)

Design of a new somatosensory stimulus delivery device for measuring laryngeal mechanosensory detection thresholds in humans

Michael J Hammer

Voice-related modulation of mechanosensory detection thresholds in the human larynx

Michael J Hammer, Mallory A Krueger

Laryngeal somatosensory deficits in Parkinson’s disease: implications for speech respiratory and phonatory control

Michael J Hammer, Steven M Bartle

Supported by NIH Grants DC014519, DC010900, RR025012 and the Dystonia Coalition
Voice-Related Modulation of Mechanosensory Detection Healthy Mechanisms

Subject Line: “NIH Update: Look at science funding across agencies, Considering sex as a biological research variable, Peer review webinars, Subaccounting for NIH awards”
NIH to balance sex in cell and animal studies

Janine A. Clayton and Francis S. Collins unveil policies to ensure that preclinical research funded by the US National Institutes of Health considers females and males.

Janine A. Clayton is director of the US National Institutes of Health Office of Research on Women's Health, and associate director for research on women's health, Bethesda, Maryland, USA. Francis S. Collins is director of the US National Institutes of Health, Bethesda, Maryland, USA.
Voice-related modulation of mechanosensory detection thresholds in the human larynx

Michael J Hammer, Mallory A Krueger

Figure 3 Laryngeal mechanosensory detection thresholds for baseline tidal breathing and voice conditions for women (solid) and men (striped). (* p < 0.05) On the left, bar height represents mean (standard error) detection threshold for baseline and voice conditions. On the right, bar height represents mean increase and mean factor increase in detection threshold compared with baseline. (1 mm Hg = 133.32 Pa)
Adductor Spasmodic Dysphonia (ADSD)

Adductor Spasmodic Dysphonia (ADSD) is a chronic, speech-specific focal laryngeal dystonia characterized by intermittent hyperadduction of the vocal folds, voice breaks, strained-strangled voice, and increased effort to speak.
Sensory Mechanisms in Laryngeal Dystonia

Abnormal sensory mechanisms have been proposed as a potential contributor to focal dystonias, including the laryngeal dystonia of ADSD. However, the potential sensorineural mechanisms underlying the laryngeal dystonias remain largely unexplored.
Somatosensory Changes with Botulinum Toxin
Task-Specific Laryngeal Mechanosensory Modulation is Altered in Individuals with Adductor Spasmodic Dysphonia: Direct Evidence of Increased Somatosensory Excitability

Figure 9. Preliminary data from 4 participants with ADSD immediately before (white bars) and 2 weeks after (gray bars) bilateral injection of botulinum toxin into the thyroarytenoid muscles, and 4 healthy controls (black bars). Horizontal lines denote ‘normal’ detection threshold range for tidal breathing. Healthy controls exhibited consistent, increased detection thresholds during voice, speech, and whisper. Before injection, ADSD participants exhibited task-specific abnormal detection thresholds (increased laryngeal mechanosensory sensitivity) during voice and speech tasks, but relatively ‘normal’ thresholds during baseline tidal breathing and whisper. Two weeks after injection, ADSD participants exhibited similar detection thresholds to controls for each task.
Exaggerated Laryngeal Sensitivity in Dystonia (Spasmodic Dysphonia)

Laryngeal Mechanosensory Thresholds by Task

- **Baseline Tidal Breathing**
 - Healthy Controls: Similar to controls
 - ADSD: Before
 - After

- **Voice ("eeeee")**
 - Healthy Controls: Lower thresholds during voice
 - ADSD: Before
 - After

- **Speech ("We eat eels.")**
 - Healthy Controls: Lower thresholds during speech
 - ADSD: Before
 - After

- **Whisper ("We eat eels.")**
 - Healthy Controls: Similar to controls
 - ADSD: Before
 - After

Participants (4 Controls; 4 ADSD - Before and After botulinum toxin)
Non-Invasive Approach

Our Approaches to Study Somatosensory and Auditory Mechanisms of Voice Control

Left: Direct Somatosensory Stimulation of the Laryngeal Mucosa (developed in our laboratory)
Center: Non-Invasive Mechanosensory Perturbation During Breathing and Voice (developed in our laboratory)
Right: Pitch-Shifted Auditory Feedback (developed with collaborator Dr. Charles Larson)

Supported by NIH Grants DC014519, DC010900, RR025012 and the Dystonia Coalition
Non-Invasive Approach

Non-Invasive Approach

Figure 2. Grand average of event-related potentials (global field power) from 12 healthy participants. Mechanosensory perturbation (rapid shift in resistance from high resistance to low resistance) occurs at t = 0 indicated by the solid vertical line. Three discrete phases are seen in the event-related response. Detailed localization and spectral analysis suggests the following localization:

- **Phase 1** (~40ms) = primary motor cortex
- **Phase 2** (~100ms) = primary somatosensory cortex
- **Phase 3** (~250ms) = frontal lobe region indicating surprise

Figure 3. Sensory Input to Laryngeal Primary Motor Cortex.

Left: Grand average spectral power from frontal electrode F7. Mechanosensory perturbation occurs at t = 0 indicated by the solid vertical line. Mu spectral power centered at 10Hz (horizontal red band) decreases with a latency of ~40ms after the sensory perturbation, consistent with sensory input arriving to the laryngeal motor cortex.

Right: Topographic map averaged over the time interval 32-52ms after sensory perturbation suggesting inferior frontal lobe, and consistent with sensory input to the laryngeal motor cortex.

N = 12 Healthy Adults
Participants

• Adductor Spasmodic Dysphonia
 • N = 10 Women with ADSD
 • No history of other neurological or psychiatric disease
 • No history of pulmonary disease

• Healthy Controls
 • N = 10 Age-Matched Women (for direct comparison)
 • N = 10 Age-Matched Men (to examine potential sex effects)
 • No history of neurological or psychiatric disease
 • No history of pulmonary disease
 • Normal speech, swallow and voice
Test Sessions

ADSD – Two Test Sessions

“Baseline” - After a return to baseline symptoms (minimum of 3-4 months after most recent injection)

“Post-Injection” – After botulinum toxin injection (scheduled ~2-4 weeks after injection) when each has experienced symptom relief based on a detailed diary and clinical/instrumental voice assessment).

Age-Matched Healthy Controls – Two Test Sessions

Two Separate Test Sessions – Separated by 2-3 weeks.
Tasks

1. “Baseline” Tidal Breathing

During tidal breathing, the mechanosensory perturbation device will be TTL triggered by the initiation of the expiratory phase of respiration as transduced using a standard air flow transducer.

2. Sustained vowel “ahhh” at a comfortable habitual pitch and loudness

3. Whispering the vowel “ahhh”

During voice tasks, stimulus presentation is similarly triggered by TTL 2-2.5 seconds after the onset of vocalization.
Tasks

We will use the TTL signal to time-align and signal average the EEG trials.

Based on previous feasibility trials, we plan to use an alternating block design to reduce potential response habituation.

For each task, each participant will undergo 120 trials (12 blocks x 10 trials per task). We will counterbalance the order of tasks tested across participants.
Hypotheses

1. We hypothesize that individuals with ADSD will exhibit larger amplitude evoked cortical responses during voiced phonation tasks compared with healthy controls. (But similar during respiratory, whisper, and falsetto tasks.)

2. We also hypothesize that the magnitude of sensory-evoked cortical responses during the voiced phonation task will strongly correlate with clinical/instrumental measures of laryngeal, speech, and voice severity.

3. We hypothesize that sensory and speech/voice measures will “improve” with botulinum toxin treatment.
Next Steps

• Continue data collection and analysis.
• Prepare Application for R01 Grant
Non-Invasive Mechanosensory Perturbation to Test Voice-Related Motor and Somatosensory Cortical Responses in Spasmodic Dysphonia

Michael J. Hammer, M.A., Ph.D., CCC-SLP
Director, Airway Sensory Physiology Laboratory
Director, Center for Clinical Speech, Voice, and Swallow Physiology
University of Wisconsin – Whitewater

Supported by NIH Grants DC014519, DC010900, RR025012 and the Dystonia Coalition